

República Argentina - Poder Ejecutivo Nacional AÑO DE LA DEFENSA DE LA VIDA, LA LIBERTAD Y LA PROPIEDAD

Disposición

Número:
Referencia: -0047-3110-004968-23-0
VISTO el Expediente Nº 1-0047-3110-004968-23-0 del Registro de esta Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), y: CONSIDERANDO:
Que por las presentes actuaciones BioSystems S.A. solicita se autorice la inscripción en el Registro Productores y Productos de Tecnología Médica (RPPTM) de esta Administración Nacional, de un nuevo/s Producto/s Médico/s para diagnóstico in vitro.
Que en el expediente de referencia consta el informe técnico producido por el Servicio de Productos para Diagnóstico in vitro que establece que los productos reúnen las condiciones de aptitud requeridas para su autorización .
Que se ha dado cumplimiento a los términos que establecen la Ley Nº 16.463, Resolución Ministerial Nº 145/98 y Disposición ANMAT Nº 2674/99 y normas complementarias.
Que el Instituto Nacional de Productos Médicos ha tomado la intervención de su competencia.
Que corresponde autorizar la inscripción en el RPPTM del producto médico objeto de la solicitud.
Que la presente se dicta en virtud de las facultades conferidas por los Decretos Nº 1490/92 y sus modificatorios.

LA ADMINISTRADORA NACIONAL DE LA ADMINISTRACIÓN NACIONAL DE MEDICAMENTOS, ALIMENTOS Y TECNOLOGÍA MÉDICA

Por ello;

DISPONE:

ARTÍCULO 1°.- Autorízase la inscripción en el Registro Nacional de Productores y Productos de Tecnología Médica (RPPTM) de la Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT) del producto médico para diagnóstico de uso in vitro de acuerdo con lo solicitado por BioSystems S.A. con los Datos Característicos que figuran al pie de la presente.

ARTÍCULO 2°.- Autorízanse los textos de los proyectos de rótulo/s y de instrucciones de uso que obran en documento N° IF-2023-150298929-APN-INPM% ANMAT.

ARTÍCULO 3°.- En los rótulos e instrucciones de uso autorizados deberá figurar la leyenda "Autorizado por la ANMAT PM 626-205", con exclusión de toda otra leyenda no contemplada en la normativa vigente.

ARTICULO 4°.- Extiéndase el Certificado de Autorización e Inscripción en el RPPTM con los datos característicos mencionados en esta disposición.

ARTÍCULO 5°.- La vigencia del Certificado de Autorización será de cinco (5) años, a partir de la fecha de la presente disposición.

ARTÍCULO 6°.- Regístrese. Inscríbase en el Registro Nacional de Productores y Productos de Tecnología Médica al nuevo producto. Por el Departamento de Mesa de Entrada, notifíquese al interesado, haciéndole entrega de la presente Disposición, conjuntamente con rótulos e instrucciones de uso autorizados y el Certificado mencionado en el artículo 4°. Gírese a la Dirección de Gestión de Información Técnica a los fines de confeccionar el legajo correspondiente. Cumplido, archívese.

DATOS IDENTIFICATORIOS CARACTERÍSTICOS

Nombre descriptivo: NGSgo® Library Full Kit

Marca comercial: Genome Diagnostics B.V (GenDX)

Modelos:

- NGSgo® Library Full Kit (Ref.: 2842156).
- NGSgo® Library Full Kit (Ref.: 2842256).
- NGSgo® Library Full Kit (Ref.: 2842356).
- NGSgo® Library Full Kit (Ref.: 2842456).

Indicación/es de uso:

NGSgo Library Full Kit es un dispositivo de diagnóstico in vitro cualitativo destinado a la preparación de bibliotecas para aplicaciones de secuenciación de próxima generación (NGS) descendentes. Las muestras son amplicones derivados de dispositivos NGSgo, originados a partir de ADN genómico humano.

El kit está destinado a generar bibliotecas de ADN, que son adecuadas para la genotipificación de HLA a un nivel de alta resolución. Es un ensayo no automatizado de un solo uso para ayudar en el diagnóstico de la compatibilidad del gen HLA entre el donante y el receptor con fines de trasplante. La población de prueba

prevista son tanto donantes de trasplantes como receptores de trasplantes.

El kit completo de la biblioteca NGSgo está destinado para uso profesional de laboratorio, por personal capacitado en amplificación por PCR. Está destinado a ser utilizado en procedimientos de trasplante donde el tiempo no es un factor crítico.

Forma de presentación: NGSgo® Library Full Kit (para 96 reacciones) se compone de dos cajas:

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX).

Parte 2 de 2 (GenDx-AMPure XP).

NGSgo® Library Full Kit

A) Ref.: 2842156

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).
- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate 1: Placa NGSgo-IndX 1; 1 placa x 96 reacciones (Ref.: 2002153).

Parte 2 de 2 (GenDx-AMPure XP).

- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

B) Ref.: 2842256

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).
- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.:

2002005.6).

- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate II: Placa NGSgo-IndX II; 1 placa x 96 reacciones (Ref.: 2002253).

Parte 2 de 2 (GenDx-AMPure XP).

- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

C) Ref.: 2842356

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).
- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate III: Placa NGSgo-IndX III; 1 placa x 96 reacciones (Ref.: 2002353). Parte 2 de 2 (GenDx-AMPure XP).
- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

D) Ref.: 2842456

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).

- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate IV: Placa NGSgo-IndX IV; 1 placa x 96 reacciones (Ref.: 2002453). Parte 2: GenDx-AMPure XP
- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

Período de vida útil y condición de conservación: NGSgo® Library Full Kit, parte 1 de 2: NGSgo-IndX y NGSgo-LibrX debe almacenarse a -20 °C.

- NGSgo-LibrX es estables durante 18 meses después de la fecha de fabricación, a excepción del tampón de preparación final, que es estable durante 2 años después de la fecha de fabricación.
- NGSgo-IndX es estables durante 2 años después de la fecha de fabricación.

NGSgo® Library Full Kit, parte 2 de 2: GenDx-AMPure XP debe almacenarse a 4 °C. Los componentes GenDx-AMPure XP son estables durante 2 años después de la fecha de fabricación.

Nombre del fabricante:

Genome Diagnostics B.V.

Lugar de elaboración:

Yalelaan 48, 3584 CM Utrecht, Paises Bajos

Condición de uso: Uso profesional exclusivo

Expediente Nro:

1-0047-3110-004968-23-0

N° Identificatorio Trámite: 51845

Digitally signed by PEARSON Enriqueta María Date: 2024.01.26 12:50:26 ART Location: Ciudad Autónoma de Buenos Aires

GENDX

NGSgo® Library Full Kit

NGSgo®-LibrX NGSgo®-IndX GenDx-AMPure XP

Preparación e indexación de bibliotecas para aplicaciones de secuenciación posteriores en plataformas Illumina

Instrucciones de uso

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503

Versión 2, 2021/06 **MAT** 2812006

DIO. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A.

ACTUALIZACIONES Y NOTAS IMPORTANTES

Actualización de la versión 2

• Se han añadido características de rendimiento clínico.

Ferm. Eduardo Omar Miguez Błośystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A

ÍNDICE

1	Nota sobre símbolos	5
2	Contenido del Kit	6
3	Envío y almacenamiento	7
4	Asistencia técnica	7
5	Fin previsto	8
6	Advertencias y precauciones	9
7	Principio	10
8	Procedimiento	10
9	Características de rendimiento	11
10	Equipo y reactivos	13
11	Protocolos	14
	Protocolo 1. Amplificación	14
	Protocolo 2A. Cuantificación de ADN (singleplex)	15
	Protocolo 2B. Agrupación de amplicones (singleplex)	17
	Protocolo 3A. Fragmentación y ligadura del adaptador	19
	Protocolo 3B. Limpieza de ADN y selección de tamaño con gránulos SPRI 0,45x	22
	Protocolo 3C. Indexación PCR con placas NGSgo-IndX	22
	Protocolo 3D. Biblioteca basada en tubos, limpieza de ADN y selección de tamaño con	
	gránulos de SPRI 0.6x	26
	Protocolo 4. Cuantificación de la biblioteca por KAPA (opción 1)	26
	Protocolo 4. Cuantificación de la biblioteca por QUBIT (opción 2)	30
	Protocolo 5. Secuenciación de próxima generación	30
12	Apéndice A. Control de contaminación	31
13	Guía de resolución de problemas	32
14	Contrato de licencia limitada	35
	Información sobre pedidos	36

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503

Dra. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

DESCARGO DE RESPONSABILIDAD

GenDx ha hecho todo lo posible por que estas instrucciones de uso sean precisas. La información de estas instrucciones de uso puede cambiar sin previo aviso. GenDx se reserva el derecho de realizar mejoras en estas instrucciones de uso o en los productos descritos en ellas en cualquier momento sin previo aviso.

Si encuentra información en este manual que sea incorrecta, ambigua o incompleta, estaremos muy agradecidos por sus comentarios y sugerencias. Envíelos a info@gendx.com.

DERECHOS DE AUTOR

Esta publicación, incluidas todas las fotografías e ilustraciones, está protegida por las leyes internacionales del copyright, con todos los derechos reservados. Ni este manual ni el material que contiene puede reproducirse sin el consentimiento por escrito del autor.

© Copyright 2021

Farm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARINNA VILA PEREZ APODERADA BIOSystems S.A

1 NOTA SOBRE SÍMBOLOS

Marcado CE

Dispositivo médico para diagnóstico in

vitro

MAT Número de material

VOL Volumen

COMP Componentes

LOT Código/número de lote

REF Número de catálogo

Store at -20°C Almacenar a -20 °C

[√8°C

Almacenamiento entre 2 °C y 8 °C

Contiene reactivos para N pruebas

Añadir líquido

> Fecha de caducidad

Fabricante legal

Consultar las instrucciones de uso

www.gendx.com/ifu

Ferm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 DIG. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

2 CONTENIDO DEL KIT

El kit completo de la biblioteca NGSgo se compone de dos cajas, la parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX) y la parte 2 de 2 (GenDx-AMPure XP).

El kit completo de la biblioteca NGSgo está disponible con cuatro números de catálogo diferentes, cada uno con una placa NGSgo-IndX diferente.

Tabla 1. Contenido del kit

Kit completo de biblioteca NG	Sgo®: productos disponibles (CE)
Para Illumina: IndX placa I	Cat. n. º 2842156
Para Illumina: IndX placa II	Cat. n. º 2842256
Para Illumina: IndX placa III	Cat. n. º 2842356
Para Illumina: IndX placa IV	Cat. n. º 2842456

Contenido del kit Parte 1 de 2: NGSgo-IndX y	NGSgo-LibrX		Almacenar a -20 °C
Enzima de preparación final NGSgo-LibrX	96 rxn	2 tubos	Mat. n. º 2002005.1
Tampón de preparación final NGSgo-LibrX	96 rxn	2 tubos	Mat. n. º 2002005.2
Mezcla de ligasa NGSgo-LibrX	96 rxn	2 tubos	Mat. n. º 2002005.3
Potenciador de ligadura NGSgo-LibrX	96 rxn	2 tubos	Mat. n. º 2002005.4
Mezcla de PCR HiFi NGSgo-LibrX	96 rxn	3 tubos	Mat. n. º 2002005.5
Enzima de fragmentación NGSgo-LibrX	96 rxn	2 tubos	Mat. n. º 2002005.6
Tampón de fragmentación NGSgo-LibrX	96 rxn	3 tubos	Mat. n. º 2002005.8
H ₂ O libre de nucleasas	1,25 ml	3 tubos	Mat. n. º 3000000
Adaptador para Illumina (AD-IL) NGSgo-IndX	96 rxn	2 tubos	Mat. n. º 2002103.1
placa I			Mat. n. º 2002153
Placa NGSgo- Placa II	96 rxn	1 placa	Mat. n. º 2002253
IndX Placa III	96 1311	1 placa	Mat. n. º 2002353
Placa IV			Mat. n. º 2002453

Contenido del kit Parte 2 de 2: GenDx-AM	Pure XP		Almacenar a 4°C
Tampón de elución GenDx-AMPure XP	5 ml	1 frasco	Mat. n. º 5003653.1
Gránulos GenDx-AMPure XP AMPure	5 ml	1 frasco	Mat. n. º 5003653.2

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSystems S.A.

3 ENVÍO Y ALMACENAMIENTO

Envío y almacenamiento

- El kit completo de la biblioteca NGSgo, parte 1 de 2: NGSgo-IndX y NGSgo-LibrX se envía en hielo seco y debe almacenarse a -20 °C a su llegada.
- El kit completo de la biblioteca NGSgo, parte 2 de 2: GenDx-AMPure XP se envía a temperatura ambiente o en hielo y debe almacenarse a 4 °C a su llegada.
- Los reactivos del kit completo de biblioteca NGSgo deben volverse a guardar a las temperaturas de almacenamiento recomendadas inmediatamente después de su uso.
- Los cambios en la apariencia física de los reactivos del kit pueden indicar el deterioro del producto y pueden interferir con los resultados.
- En caso de que el envase esté dañado, póngase en contacto con support@gendx.com.

Vida útil

- Los componentes del kit completo de la biblioteca NGSgo son estables hasta la fecha de caducidad indicada en las etiquetas, cuando se almacenan a las temperaturas de almacenamiento indicadas.
- Los componentes de NGSgo-LibrX son estables durante 18 meses después de la fecha de fabricación, a excepción del tampón de preparación final, que es estable durante dos años después de la fecha de fabricación.
- Los componentes de NGSgo-IndX son estables durante dos años después de la fecha de fabricación.
- Los componentes GenDx-AMPure XP son estables durante dos años después de la fecha de fabricación.

Estabilidad en uso

- La estabilidad en uso de los componentes del kit completo de la biblioteca NGSgo es igual a la vida útil de los componentes, cuando se vuelven a guardar a las temperaturas de almacenamiento recomendadas inmediatamente después de su uso.
- Los componentes de NGSgo-LibrX pueden soportar 12 ciclos de congelación-descongelación.
- Los componentes de NGSgo-IndX pueden soportar 24 ciclos de congelación-descongelación.
- GenDx-AMPure XP no debe congelarse.

4 ASISTENCIA TECNICA

Para obtener asistencia técnica y más información:

Email: support@gendx.com

Página web: www.gendx.com/support Teléfono: +31 (0) 30 252 3799

o póngase en contacto con su distribuidor local de GenDx en (www.gendx.com).

Farm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A

5 FIN PREVISTO

NGSgo Library Full Kit es un dispositivo de diagnóstico in vitro cualitativo destinado a la preparación de bibliotecas para aplicaciones de secuenciación de próxima generación (NGS) descendentes. Las muestras son amplicones derivados de dispositivos NGSgo, originados a partir de ADN genómico humano.

El kit está destinado a generar bibliotecas de ADN, que son adecuadas para la genotipificación de HLA a un nivel de alta resolución. Las bibliotecas generadas se pueden utilizar para plataformas posteriores de Illumina. Es un ensayo no automatizado de un solo uso para ayudar en el diagnóstico de la compatibilidad del gen HLA entre el donante y el receptor con fines de trasplante (por ejemplo, trasplante de células madre hematopoyéticas). La población de prueba prevista son tanto donantes de trasplantes como receptores de trasplantes.

El kit completo de la biblioteca NGSgo está destinado para uso profesional de laboratorio en un entorno de laboratorio de diagnóstico acreditado por EFI o ASHI, por personal capacitado en amplificación por PCR. Está destinado a ser utilizado en procedimientos de trasplante donde el tiempo no es un factor crítico.

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

6 ADVERTENCIAS Y PRECAUCIONES

Limitaciones de uso del producto

- Para garantizar los mejores resultados, utilice el kit completo de la biblioteca NGSgo con los materiales, reactivos y equipo recomendados en la sección 8 «Equipo y reactivos».
- El uso de materiales distintos de los especificados, debe ser validado por el usuario.
- El uso de los reactivos en volúmenes distintos de los especificados en estas instrucciones de uso pueden provocar resultados incorrectos y se desaconsejan.
- GenDx no puede prestar asistencia en caso de problemas debidos al incumplimiento de estas instrucciones de uso.
- Tenga en cuenta especialmente el anexo A: «Control de contaminación».
- En caso de que los resultados del tipaje sean homocigóticos, se recomienda comprobar si la muestra es realmente homocigótica o si contiene un segundo alelo que está infrarrepresentado en los datos.

Validación del ensayo

- El kit completo de la biblioteca NGSgo se ha validado utilizando amplicones derivados de las estrategias de amplificación NGSgo HLA NGSgo-AmpX v2 (12 loci), NGSgo-MX6-1 (6 loci) y NGSgo-MX11-3 (11 loci).
- El kit completo de la biblioteca NGSgo se ha validado en Illumina MiSeq. Se ha confirmado experimentalmente la compatibilidad del kit completo de la biblioteca NGSgo con Illumina iSeq 100 y MiniSeq. Otras plataformas de secuenciación de Illumina (p. ej., HiSeq, NextSeq) que utilizan una química similar a la de MiSeq son compatibles, el usuario debe determinar las condiciones óptimas.
- El kit completo de la biblioteca NGSgo se ha validado en el sistema Applied Biosystems ProFlex PCR, otros termocicladores requieren la validación del usuario final.
- Antes de poner en marcha el flujo de trabajo de NGSgo para el tipaje de HLA mediante NGS en su laboratorio, lleve a cabo una validación de los métodos de tipaje basados en secuenciación con muestras moleculares tipificadas conocidas. Dichas muestras (paneles de referencia HLA) pueden obtenerse del International Histocompatibility Working Group o del Coriell Institute.

Información de seguridad

- Cuando trabaje con productos químicos, lleve siempre una bata de laboratorio adecuada, guantes desechables y gafas de protección. Para obtener más información, así como las consideraciones sobre eliminación, consulte las hojas de datos de seguridad de materiales oportunas, que están disponibles en www.GenDx.com.
- Si se ha producido algún incidente grave en relación con este producto, notifíqueselo a GenDx lo antes posible para que sea posible comunicarlo a las autoridades competentes en su país.

Farm. Eduardo Omar Miguez. BłoSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSystems S.A

7 PRINCIPIO

Fragmentación y ligadura del adaptador con el kit completo de biblioteca NGSgo

El componente NGSgo-LibrX del kit completo de la biblioteca consta de reactivos de preparación de bibliotecas para productos de PCR amplificados (amplicones). NGSgo-LibrX utiliza diferentes enzimas para la fragmentación aleatoria y la reparación final de los amplicones. Este paso es necesario para crear sitios de unión para el adaptador compatible con Illumina, que se liga a los fragmentos de ADN utilizando reactivos de ligación NGSgo-LibrX y el adaptador NGSgo-IndX. El adaptador crea sitios de unión para los índices compatibles con Illumina y crea sitios de unión para los cebadores de secuenciación. Después de la ligadura del adaptador, el ADN se selecciona por tamaño y se limpia con perlas magnéticas GenDx-AMPure XP. Se seleccionan fragmentos de ADN de ~400 pb y mayores y se eliminan los fragmentos más cortos o las enzimas y sales restantes.

Indexación con el kit completo de la biblioteca NGSgo

Los fragmentos de ADN ligados al adaptador se indexan de forma dual durante la PCR de indexación utilizando la mezcla de PCR NGSgo-LibrX HiFi y la placa NGSgo-IndX. Los índices se componen de cebadores de índice 1 (i7) e índice 2 (i5), que contienen las secuencias necesarias para la formación de grupos y la identificación de muestras. Después de la indexación, se realiza un segundo paso de selección de tamaño y limpieza utilizando perlas magnéticas. Las bibliotecas indexadas se agrupan para crear un grupo de bibliotecas, que representa múltiples genes de múltiples muestras. Después de la agrupación, se determina la concentración de la biblioteca para lograr una densidad de agrupación óptima en la celda de flujo de Illumina. La opción 1 del protocolo de cuantificación de la biblioteca que se describe en estas instrucciones de uso se refiere al kit de cuantificación de la biblioteca KAPA, que se basa en qPCR y utiliza cebadores específicos del adaptador para cuantificar con precisión la concentración de la biblioteca HLA. La opción 2 del protocolo de cuantificación de la biblioteca se refiere al ensayo Qubit para la detección de dsDNA.

8 PROCEDIMIENTO

Utilizando productos de PCR amplificados específicos (amplicones) como entrada, el kit completo de biblioteca NGSgo se aplica para la preparación de bibliotecas y la indexación de los amplicones. El procedimiento incluye fragmentación y ligadura del adaptador, limpieza de ADN y selección de tamaño con gránulos SPRI 0.45x, PCR de indexación con placas NGSgo-IndX, agrupación de bibliotecas, limpieza de ADN y selección de tamaño con gránulos SPRI 0.6x y cuantificación de bibliotecas. Las bibliotecas resultantes se pueden utilizar posteriormente para la secuenciación de próxima generación en plataformas Illumina.

Farm. Eduardo Omar Miguez Błosystems S.A. Director Tecnico M.N. 17503 Ora. MARIANA VILA PEREZ APODERADA BIOSystems S.A

9 CARACTERÍSTICAS DE RENDIMIENTO

El resumen de seguridad y rendimiento está disponible en Eudamed.

Características analíticas de rendimiento

Especificidad analítica

El kit completo de biblioteca proporciona detección e identificación específicas de muestras y alelos independientemente de la estrategia de amplificación de NGSgo HLA utilizada como entrada

Veracidad

- El kit completo de bibliotecas proporciona resultados sólidos en la preparación de bibliotecas cuando:
 - La incubación de los gránulos varía entre 1 y 10 minutos.
 - Las muestras se dejan en el banco, en mezcla de fragmentación, hasta 10 minutos.
 - Las concentraciones de gránulos varían de 0,4x a 0,5x en la primera y de 0,55x a 0,65x en la segunda limpieza de gránulos.
 - Los termocicladores se desvían no más de 1 °C de la temperatura indicada.
 - La cantidad de loci (altamente homólogos) presentes en la muestra varía.
 - La mezcla maestra de ligadura de adaptador se crea como máximo 1 hora antes de su uso.
- El kit completo de biblioteca no puede soportar variaciones en el número de ciclo de la PCR de indexación.
- La variación en la adición del adaptador entre 0,15 μl y 0,35 μl por reacción, donde el estándar es 0,25 μl, no afecta el rendimiento del kit completo de la biblioteca.
- Las variaciones en el volumen de HiFi utilizado para resuspender IndX entre 11,2 μl y 16,8 μl donde el estándar es 14 μl, no afectan el rendimiento del kit completo de la biblioteca.

Precisión

- La variabilidad entre lotes es insignificante.
- La variabilidad entre lotes, la variabilidad entre operadores y la variabilidad entre días combinadas dan como resultado una tasa de repetición debido a la pérdida de muestra de aproximadamente un 0,3 %. Es probable que esta variabilidad sea mayor durante la formación de un nuevo operador.

Límites de detección y rango de medición

La entrada de amplicón entre 5 y 1500 ng de ADN se puede utilizar de forma segura para el kit completo de biblioteca, el rango óptimo es 50-500 ng.

Sustancias que interfieren y reacciones cruzadas

- La presencia de hasta un 5 % de etanol, 50 mM de NaCl2, 1,5 % de ARN o 1 μg/ul de BSA en muestras de ADNg utilizadas como entrada para amplicones que posteriormente se utilizan como entrada para la preparación de la biblioteca no interfiere con el kit completo de biblioteca.
- La presencia de entrada de doble cebador en amplicones que se utilizan como entrada para la preparación de la biblioteca, así como la presencia de hasta 8 veces la cantidad esperada de Orange G en la PCR de indexación no interfiere con el kit completo de biblioteca.
- La presencia de etanol en cantidades >1 μl después de la limpieza interferirá con la cantidad, aunque no con la calidad de las bibliotecas generadas con el kit completo de bibliotecas.
- La presencia de cualquier cantidad de gránulos de AMPure XP después de la limpieza interferirá en gran medida con la cantidad y calidad de las bibliotecas generadas con el kit completo de bibliotecasuez

Błosystems S.A.
Director Tecnico

DIG. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A

Características clínicas de rendimiento

Sensibilidad y especificidad diagnóstica

Tres centros de estudio analizaron catorce muestras cada uno con el kit completo de biblioteca NGSgo, utilizando amplicones de dos estrategias de amplificaciones

independientes (7 muestras NGSgo®-AmpX v2 y 7 muestras NGSgo®-MX6-1). En cada sitio, todas las muestras se tipificaron correctamente. Todos los resultados de tipificación correcta fueron verdaderos resultados positivos y no se encontraron falsos negativos. Esto da como resultado una sensibilidad diagnóstica del 100 %.

Se incluyeron controles negativos en cada experimento. Se encontraron resultados negativos correctos para todas las muestras y no se encontraron falsos positivos. Esto da como resultado una especificidad diagnóstica del 100 %.

Valores predictivos positivos y negativos

Según la sensibilidad diagnóstica y la especificidad diagnóstica, los valores predictivos positivos y negativos son ambos del 100 %.

Razón de probabilidad

La razón de probabilidad positiva es 1. La razón de probabilidad negativa es cero.

Valores esperados en poblaciones normales y afectadas

Los valores esperados en poblaciones normales frente a afectadas son idénticos.

Farm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico M.N. 17503 Drg. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

10 EQUIPO Y REACTIVOS QUE DEBE PROPORCIONAR EL USUARIO

Tabla 2. Equipo y reactivos

Tubiu 2. Equipo y reactivos		
Equipo y reactivos	Número de catálogo	Proveedor
Pipetas y puntas con filtros hidrófobos	N/A	Múltiple
Pipetas multicanal (20 μl y 300 μl)	N/A	Múltiple
Bloque de hielo o enfriamiento (4 °C)	N/A	Múltiple
Tubos de reacción y/o placas de reacción de	N/A	Múltiple
96 huecos		
Tubos, tiras o placas para PCR	N/A	Múltiple
Sellos adhesivos o tapas de 8 tiras	N/A	Múltiple
Microcentrifugadora	N/A	Múltiple
Centrifugadora	N/A	Múltiple
Termociclador	N/A	Múltiple
Vórtice	N/A	Múltiple
Agua MilliQ	N/A	Múltiple
Protocolo 2: Cuantificación de ADN		
Kit de ensayo Qubit® DNA BR (500 ensayos)	Q32853	Life Technologies
Fluorómetro Qubit® 4	Q33238	Life Technologies
Tubos de ensayo Qubit®	Q32856	Life Technologies
Protocolo 3: Preparación de la biblioteca		
Soporte magnético para placa de 96 huecos	AM10027	Ambion
Soporte magnético para tubo de 1,5 ml	Z5332	Promega
Agitador (1500 rpm)	N/A	Múltiple
Etanol absoluto	N/A	Múltiple
Depósito de reactivo de 25 ml	89094-664	VWR
Protocolo 4: Cuantificación de bibliotecas		
Opcional: Kit de cuantificación de biblioteca	KK4824	Roche Molecular Systems
KAPA para Illumina		
Opcional: Equipos y reactivos Qubit	ver protocolo 2 arriba	Life Technologies
Opcional: Instrumento de PCR en tiempo real	N/A	Múltiple
Opcional: Tubos/placas ópticas y junta	N/A	Múltiple
(dependiente del instrumento en tiempo real)		

BloSystems S.A.
Director Tecnico
M.N. 17503

DIG. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

11 PROTOCOLOS

PROTOCOLO 1. AMPLIFICACIÓN

El kit completo de biblioteca NGSgo consta de reactivos de preparación de biblioteca para productos de PCR amplificados (amplicones). Por lo tanto, se debe utilizar un protocolo de amplificación antes de utilizar el kit completo de biblioteca. Las instrucciones de uso de la amplificación están disponibles en www.GenDx.com, donde se proporciona un listado compatible de IDU en la tabla 3.

Tabla 3. Ejemplo de protocolos de amplificación compatibles con el kit completo de biblioteca NGSgo

Protocolo de	Singleplex o multiplex	Número de material IFU (CE)
amplificación		
NGSgo-AmpX v2	Singleplex	7810000
NGSgo-MX6-1	Multiplex	7810004
NGSgo-MX11-3	Multiplex	7811800

Singleplex

En caso de amplificación singleplex, continúe con el protocolo 2A de las Instrucciones de uso del kit completo de la biblioteca.

Multiplex

En caso de amplificación multiplex, omita los protocolos 2A y 2B de las Instrucciones de uso del kit completo de la biblioteca y continúe con el protocolo 3A.

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 DIG. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

PROTOCOLO 2A. CUANTIFICACIÓN DE ADN (PARA AMPLICONES SINGLEPLEX)

Notas importantes antes de comenzar

- Este protocolo se puede utilizar para cuantificar los amplicones obtenidos mediante la estrategia de amplificación singleplex de NGSgo, p. NGSgo-AmpX v2.
- Se recomienda cuantificar la concentración de ADN de los amplicones antes de continuar con el paso de preparación de la biblioteca.
- El método de cuantificación de ADN Qubit ha sido validado para NGSgo y se describe aquí.
- Los estándares de ADN Qubit se almacenan a 4 °C, y el tinte y el tampón se almacenan a temperatura ambiente protegidos de la luz. Asegúrese de que todos los reactivos de Qubit estén a temperatura ambiente antes de comenzar la cuantificación de ADN.
- Si tiene un panel de muestras grande, se recomienda medir la concentración de cada gen para ~3 muestras representativas, según los resultados del gel de agarosa. La concentración de amplicón media de cada gen generalmente es representativa para todo el panel de muestras.
 Para DRB3/4/5, asegúrese de que los amplicones seleccionados muestren una banda positiva.

Protocolo

- 1. Prepare todas las reacciones a temperatura ambiente y protegidas de la luz. Use guantes cuando manipule los tubos de ensayo. Utilice únicamente tubos de PCR transparentes de pared fina de 0,5 ml que sean adecuados para su uso en el fluorómetro Qubit.
- 2. Prepare dos tubos de ensayo Qubit para los dos estándares de ADN y un tubo de ensayo Qubit para cada muestra de ADN.
- 3. Prepare la solución de trabajo Qubit haciendo una dilución 1:200 del reactivo Qubit en tampón Qubit de acuerdo con la Tabla 4. Prepare 200 µl de solución de trabajo para cada estándar de ADN y/o muestra de ADN. Se recomienda hacer una mezcla maestra con un volumen suficiente para todas las muestras y estándares.

Tabla 4. Composición de la solución de trabajo Qubit

Componente	Volumen
Reactivo Qubit	1 μΙ
Tampón Qubit	199 μΙ
Volumen total	200 μl

4. Prepare los tubos de ensayo Qubit de acuerdo con la tabla 5.

Tabla 5. Composición de los tubos de ensayo Qubit

Componente	Estándar de	Muestra de ADN
Solución de trabajo	190 µl	198 μΙ
Estándar de ADN (del	10 μΙ	-
Muestra de ADN	-	2 μΙ
Volumen total	200 μΙ	200 μΙ

- 5. Agite en el vórtice todos los tubos durante 2-3 segundos e incube los tubos durante 2 minutos a temperatura ambiente, protegidos de la luz.
- 6. Inserte los tubos en el fluorómetro Qubit y tome las lecturas.

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 DIO. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A. 7. Determine la concentración de amplicones.

La concentración se puede calcular automáticamente utilizando la función Calculadora de dilución del fluorómetro Qubit. Para calcular manualmente la concentración, multiplique la concentración medida por el factor de dilución (100x) de la muestra de ADN diluida.

Farm. Eduardo Omar Miguez BłoSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

PROTOCOLO 2B. AGRUPACIÓN DE AMPLICONES (PARA AMPLICONES SINGLEPLEX)

Notas importantes antes de comenzar

- No mezcle amplicones de diferentes muestras de ADN, solo mezcle amplicones de la misma muestra de ADN.
- Para obtener resultados de lectura consistentes y equilibrados para todos los loci, la variación de la concentración de amplicón entre muestras debe ser limitada. En caso de pérdida de amplificación, repita la amplificación.
- La forma óptima de agrupación es combinar concentraciones equimolares de amplicones HLA para lograr una profundidad de lectura igual para todos los loci y todas las muestras.
- Las concentraciones equimolares se pueden determinar utilizando la hoja de cálculo de agrupación NGSgo (www.gendx.com) que tiene en cuenta el tamaño del amplicón y las diferencias de concentración.
- Una vez que se ha optimizado el procedimiento de amplificación, lo que da como resultado rendimientos de amplicones reproducibles, también es posible agrupar los amplicones utilizando las proporciones de volumen establecidas en experimentos anteriores. Para los grupos de amplicones que contienen 11 loci HLA, se recomienda siempre cuantificar la concentración de amplicones de antemano para lograr un grupo equimolar.
- La agrupación de amplicones es opcional: también es posible procesar amplicones individuales que no se hayan agrupado en el procedimiento de preparación de la biblioteca posterior.
 Asegúrese de incluir un paso de normalización al combinar bibliotecas de amplicones individuales con grupos de amplicones para minimizar las diferencias de profundidad de lectura.

Protocolo

- Determine la concentración de amplicón (media) para cada gen en ng/μl. Esto se puede hacer completando las concentraciones de ADN medidas en la Hoja de cálculo de agrupación de NGSgo.
- 9. Reúna los amplicones para cada muestra de acuerdo con los volúmenes calculados por la Hoja de cálculo de combinación de NGSgo. Cuando el rendimiento de amplicones para todas las muestras de ADN es similar, puede aplicar la misma estrategia de agrupación a todas las muestras de ADN. Para amplicones débiles (<50 ng/μl), compense duplicando la cantidad de volumen del amplicón débil en la combinación, o cuantifique la concentración y calcule el volumen exacto requerido para la combinación equimolar usando la hoja de cálculo.</p>
- 10. Continúe con el Protocolo 3A, utilizando ~250 ng del conjunto de amplicones como entrada de ADN para la preparación de la biblioteca.

Ferm. Eduardo Omar Miguez
BioSystems S.A.
Director Tecnico
M.N. 17503

Drg. MARIANA VILA PEREZ APODERADA BIOSystems S.A

PROTOCOLO 3A. FRAGMENTACIÓN Y LIGADURA DEL ADAPTADOR

Notas importantes antes de comenzar

- La cantidad óptima de ADN de entrada para lograr el tamaño de inserto y la concentración de biblioteca óptimos es 250 ng. Sin embargo, se puede usar una cantidad (combinada) de ADN de entrada en el rango de 5 a 1500 ng, con un rango óptimo de 50 a 500 ng.
- Para obtener tamaños de fragmentos y rendimiento de biblioteca óptimos, realice la fragmentación y la ligadura del adaptador (3A) y la limpieza (3B) de forma consecutiva. No almacene las muestras en ningún momento durante el Protocolo 3A y 3B. Las muestras se pueden almacenar después de la limpieza (Protocolo 3B).
- Prepare un volumen de mezcla de reacción un 10 % mayor que el requerido para el número total de ensayos a realizar.
- Los gránulos de SPRI requeridas en el protocolo 3B deben estar a temperatura ambiente al comenzar, por lo que se recomienda retirar la botella de 4 ° C antes de comenzar el protocolo 3A.

Protocolo

- 1. Prepare todas las reacciones en un bloque de enfriamiento (4 °C) o en hielo. Descongele la enzima de fragmentación, el tampón de fragmentación, el tampón de preparación final, la enzima de preparación final y el H₂O libre de nucleasas. Mezcle bien las soluciones y centrifugue brevemente antes de usar. Mantenga todos los reactivos a 4 °C.
- 2. Prepare una mezcla maestra de NGSgo, como se describe en la Tabla 6.

Tabla 6. Composición de la mezcla de reacción NGSgo para fragmentación y reparación de extremos

Componente	Color de la	Volumen
Amplicón HLA (~250 ng)		Variable
Tampón de fragmentación NGSgo-	Blanco	2 μΙ
Tampón de preparación final NGSgo-	Verde	3,25 μl
Enzima de fragmentación NGSgo-LibrX	Blanco	1,5 μΙ
Enzima de preparación final NGSgo-	Verde	1,5 μΙ
H ₂ O libre de nucleasas	Blanco	Variable
Volumen total		32,5 μl

- 3. Mezcle bien la mezcla maestra, sin amplicones, y centrifugue brevemente.
- 4. Dispense el volumen apropiado de mezcla maestra por muestra en cada tubo o placa.
- 5. Dispense el volumen apropiado de amplicones (agrupados) (\sim 250 ng) en cada tubo o placa. Se recomienda utilizar un volumen mínimo de ADN de 1 μ l.
- 6. Mezcle bien la mezcla de reacción y centrifugue brevemente.
- 7. Coloque la mezcla de reacción en un termociclador, con la tapa caliente puesta, y ejecute el programa como se describe en la Tabla 7.

Farm. Eduardo Omar Miguez BłoSystems S.A. Director Tecnico M.N. 17503

Tabla 7. Protocolo de ciclo para la reacción de reparación terminal y fragmentación de NGSgo

Paso	ambiente	Tiempo
	25°C	20 min.
Fragmentación y reparación final	70°C	10 min.
Refrigeración	15°C	*

* Este no es un punto de parada seguro.

Continúe inmediatamente con el siguiente paso.

- 8. Descongele la mezcla de ligasa, el potenciador de ligadura y el adaptador (AD-IL). Mezcle bien las soluciones y centrifugue brevemente antes de usar. Mantenga todos los reactivos a 4 °C.
- 9. Prepare la mezcla maestra de NGSgo para la ligadura del adaptador en un tubo, como se describe en la Tabla 8.

Tabla 8. Composición de la mezcla maestra NGSgo para la ligadura del adaptador

Componente	Color de la tapa	Volumen
Mezcla de ligasa NGSgo-LibrX	Rojo	7,5 μl
Potenciador de ligadura NGSgo-LibrX	Rojo	0,5 μΙ
Adaptador para Illumina (AD-IL) NGSgo-IndX	Rojo	0,25 μl
H ₂ O libre de nucleasas	Blanco	1 μΙ
Volumen total		9,25 μΙ

- 10. Mezcle bien la mezcla de reacción y centrifugue brevemente.
- 11. Agregue 9,25 μ l de la mezcla maestra NGSgo para la ligadura del adaptador a los fragmentos de ADN de cola dA de 32,5 μ l, como se describe en la Tabla 9.

Tabla 9. Composición de la mezcla de reacción NGSgo para la ligadura del adaptador

Componente	Volumen
Mezcla maestra NGSgo para la ligadura del adaptador (Tabla 8)	9,25 μΙ
Fragmentos de ADN de cola dA	32,5 μl
Volumen total	41,75 μl

- 12. Mezcle bien la mezcla de reacción y centrifugue brevemente.
- 13. Incube a 20 °C durante 15 minutos en un termociclador, de acuerdo con la Tabla 10.

Tabla 10. Protocolo de ciclado para la reacción de ligadura del adaptador NGSgo

Paso	ambiente	Tiempo	
Adaptador de ligadura	20 °C	15 min.	
Refrigeración	15 °C	*	

* Este no es un punto de parada seguro.

Continúe inmediatamente con el siguiente paso.

14. Haga girar brevemente los tubos o la placa y proceda inmediatamente al Protocolo 3B para la limpieza y selección del tamaño de las muestras de ADN utilizando perlas magnéticas SPRI.

BIOSYSTEMS S.A.

BIOSYSTEMS S.A.

PRODERADA

APODERADA

PROTOCOLO 3B. LIMPIEZA DE ADN Y SELECCIÓN DE TAMAÑO CON GRÁNULOS SPRI 0.45x

Notas importantes antes de comenzar

- Prepare etanol fresco al 80 % a partir de etanol absoluto antes de su uso.
- El kit completo de biblioteca contiene perlas de SPRI GenDx-AMPure XP y tampón de elución. Cuando no utilice las perlas GenDx-AMPure XP SPRI y el tampón de elución, prepare el tampón de elución antes de usarlo (Tris-HCl 10 mM, Tween20 al 0,1 %, pH 8,0 o TE 0,1x).
- Además de GenDx-AMPure XP, se han validado las perlas magnéticas SPRI suministradas por Beckman Coulter y Macherey-Nagel.
- Asegúrese de que las perlas SPRI y el tampón de elución estén a temperatura ambiente antes de su uso.

Protocolo

- 15. Prepare todas las reacciones a temperatura ambiente. Agite los gránulos SPRI a fondo con el vórtice para resuspenderlos.
- 16. Añada 18,8 μl de gránulos resuspendidos a la mezcla de reacción del adaptador de ligadura NGSgo de 41,75 μl del Protocolo 3ª, lo que da como resultado una relación de gránulos de ADN de 0,45x.
- 17. Mezcle bien agitando con el vórtice o pipeteando hacia arriba y hacia abajo al menos 10 veces. Incube durante 5 minutos a temperatura ambiente, preferiblemente en un agitador (1500 rpm).
- 18. Centrifugue (3-4 segundos a 500 rpm) para recoger el líquido en la parte inferior del tubo. Los gránulos deben permanecer en solución.
- 19. Coloque la placa en un soporte magnético apropiado para separar los gránulos del sobrenadante. Después de que la solución esté clara (aproximadamente 5 minutos), retire con cuidado y deseche el sobrenadante pipeteando.
- 20. Agregue 200 μ l de etanol al 80 % recién preparado al tubo mientras está en el soporte magnético. Incube a temperatura ambiente durante 30 segundos y luego retire con cuidado y deseche el sobrenadante.
 - Repita este paso dos veces, para un total de tres lavados.
- 21. Retire todo el etanol residual con una pipeta de 10 μ l. Compruebe visualmente que se haya eliminado todo el etanol.
- 22. Deje secar al aire las perlas durante 3-5 minutos mientras el tubo está en el soporte magnético con la tapa abierta. Asegúrese de que todo el etanol se haya evaporado. No seque demasiado los gránulos para evitar que los gránulos SPRI se agrupen.
- 23. Retire el tubo o la placa del soporte magnético.
- 24. Eluya el ADN de los gránulos añadiendo 12,5 l de tampón de elución.
- 25. Mezcle bien agitando bien durante 30 segundos. Asegúrese de que los gránulos estén en solución.

BIOSYSTEMS S.A.
Director Tecnico

M.N. 17503

BIOSYSTEMS S.A.

BIOSYSTEMS S.A.

Instrucciones de uso del kit completo de biblioteca NGSgo versión 2, 2021-06 CE

20 de 36

- 26. Incube durante dos minutos a temperatura ambiente, preferiblemente en un agitador (1500 rpm).
- 27. Centrifugue (3-4 segundos a 500 rpm) para recoger líquido en la parte inferior del tubo. Los gránulos deben permanecer en solución.
- 28. Coloque la placa en el soporte magnético. Mientras tanto, prepare la mezcla de reacción para indexar la PCR (Protocolo 3C), mientras deja la placa sobre el imán. Una vez que la solución esté clara (aproximadamente 5 minutos), transfiera $10~\mu l$ del eluato a una placa nueva o, cuando continúe directamente con los 96 huecos de la placa IndX, transfiera $10~\mu l$ del eluato directamente a la placa IndX preparada.

Punto de parada seguro.

Después de la limpieza, las muestras se pueden almacenar entre 4 y 8 °C.

Ferm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A

PROTOCOLO 3C. INDEXACIÓN PCR con placas NGSgo-IndX

Notas importantes antes de comenzar

- Evite la contaminación cruzada de índices después de la resuspensión.
- Para asegurar combinaciones únicas de i5 e i7 para cada muestra dentro de un ciclo de secuenciación, se puede usar cualquier combinación de huecos dentro de la misma placa o en diferentes versiones de la placa IndX (I, II, III o IV). No utilice el mismo hueco de la misma placa de versión dos veces para preparar bibliotecas para el mismo experimento de secuenciación.
- Se recomienda aplicar la rotación del código de barras para evitar el arrastre de ADN entre ejecuciones consecutivas.
- Las placas se pueden usar varias veces cuando se usa solo un subconjunto de los huecos. Asegúrese de sellar los huecos que se hayan utilizado anteriormente.
- No use sellos adhesivos para precintar los huecos usados anteriormente. En su lugar, utilice tapas que se quitaron previamente o tiras de tapas nuevas.

Protocolo

- 29. Prepare todas las reacciones en un bloque de enfriamiento (4 °C) o en hielo. Descongele la mezcla de PCR HiFi. Mezcle bien la mezcla de HiFi PCR y centrifugue brevemente antes de usar.
- 30. Saque la placa NGSgo-IndX. Los índices se proporcionan en formato seco. Gire hacia abajo la placa y retire las tapas de los huecos que se utilizarán. Con el fin de generar una hoja de muestra, registre el número de placa (I, II, III o IV) y los huecos de origen de la placa IndX utilizada para codificar una muestra específica.
- 31. Cuando no utilice todos los huecos de la placa IndX, vaya al paso 32. Cuando use toda la placa, vaya al paso 33.
- 32. Uso parcial de la placa NGSgo-IndX:
 - Prepare la mezcla de reacción en la placa NGSgo-IndX agregando 14 μl de NGSgo-LibrX HiFi PCR Mix a cada hueco en uso.
 - Cierre los huecos con sus respectivos tapones (o nuevos) y deje actuar al menos 3 minutos.
 - Reúna las muestras limpiadas en el protocolo 3B y transfiera 10 μl del eluido de cada muestra a una nueva placa de 96 huecos.
 - Agite en el vórtice la placa NGSgo-IndX que contiene la mezcla de reacción a fondo y centrifugue brevemente.
 - Retire las tapas de los huecos resuspendidos de la placa NGSgo-IndX.
 - Transfiera 12,5 μl de los índices resuspendidos a los huecos de la placa con los eluidos. El volumen total de reacción en cada hueco será de 22,5 μl.
 - Vuelva a sellar los huecos usados con tapas de tiras para evitar la contaminación cruzada durante el almacenamiento y almacene a -20 °C.
 - Mezcle y centrifugue brevemente la placa que contiene la mezcla de reacción. Coloque en un termociclador con la tapa térmica puesta y ejecute el programa como se describe en la tabla 11.
- 33. Uso de los 96 huecos de la placa NGSgo-IndX:
 - Retire las tapas de la placa NGSgo-IndX.
 - Prepare la mezcla de reacción en la placa NGSgo-IndX agregando 12,5 μl de mezcla de PCR HiFi a cada hueco.
 - Cierre los huecos con sus respectivos tapones (o nuevos) y deje actuar al menos 3 minutos.

- Agite en el vórtice la placa NGSgo-IndX que contiene la mezcla de reacción a fondo y centrifugue brevemente.
- Retire las tapas de la placa NGSgo-IndX.
- Transfiera 10 μ l del eluido de cada muestra del Protocolo 3B a la placa IndX. El volumen total de reacción en cada hueco será de 22,5 μ l.
- Cierre los huecos con sus respectivos tapones o nuevos.
- Mezcle y centrifugue brevemente la placa que contiene la mezcla de reacción. Coloque en un termociclador con la tapa térmica puesta y ejecute el programa como se describe en la tabla 11.

Tabla 11. Protocolo de ciclado para la reacción de PCR de indexación NGSgo-IndX

	Paso	Temperatura	Tiempo
	Desnaturalización inicial	98°C	30 s
10 ciclos	Desnaturalización	98°C	10 s
Ciclo en 3	Templado	65°C	30 s
pasos	Elongación	72°C	30 s
	Elongación final	72°C	5 min.
	Refrigeración	15°C	∞

34. Gire brevemente la placa y continúe con el Protocolo 3D para la limpieza y la selección del tamaño de las muestras de ADN utilizando gránulos SPRI de 0.6x.

Punto de parada seguro.

Después de indexar la PCR, las muestras se pueden almacenar entre 4 y 15 °C

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 DIG. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

PROTOCOLO 3D. BIBLIOTECA BASADA EN TUBOS, LIMPIEZA DE ADN Y SELECCIÓN DE TAMAÑO CON GRÁNULOS DE SPRI 0.6x

Notas importantes antes de comenzar

- Prepare etanol fresco al 80 % a partir de etanol absoluto antes de su uso.
- El kit completo de biblioteca contiene perlas de SPRI GenDx-AMPure XP y tampón de elución. Cuando no utilice los gránulos GenDx-AMPure XP SPRI y el tampón de elución, prepare el tampón de elución (Tris-HCl 10 mM, Tween20 al 0,1 %, pH 8,0) o TE 0,1x antes de usar.
- Además de GenDx-AMPure XP, se han validado las perlas magnéticas SPRI suministradas por Beckman Coulter y Macherey-Nagel.
- Asegúrese de que las perlas SPRI y el tampón de elución estén a temperatura ambiente antes de su uso.

Protocolo

- 35. Saque las muestras del termociclador después de completar la PCR de indexación. El volumen de cada muestra es de 22,5 μl.
- 36. Reúna todas las muestras transfiriendo un volumen igual (2-22,5 μl) de cada muestra a un tubo nuevo. El volumen total del conjunto debe ser de al menos 100 μl. Si tiene 4 muestras o menos, no alcanzará los 100 μl. En este caso, agrupe transfiriendo 20 μl de cada muestra a un tubo nuevo y omita el paso 37. En el paso 39, agregue un volumen de gránulos igual a:
 - 12 μl x número de muestras (relación 0,6x gránulos: ADN).
- 37. Transfiera 100 μl del repositorio a un nuevo tubo de 1,5 ml.
- 38. Prepare todas las reacciones para la limpieza de gránulos SPRI a temperatura ambiente. Agite los gránulos SPRI en el vórtice a fondo para resuspenderlos.
- 39. Agregue 60 μ l de gránulos SPRI resuspendidos al conjunto de muestras de 100 μ l, lo que da como resultado una relación de gránulos: ADN de 0.6x.
- 40. Mezcle bien agitando con el vórtice o pipeteando hacia arriba y hacia abajo al menos 10 veces. Incube durante 5 minutos a temperatura ambiente, preferiblemente en un agitador (1500 rpm).
- 41. Centrifugue (3-4 segundos a 500 rpm) para recoger el líquido en la parte inferior del tubo. Los gránulos deben permanecer en solución.
- 42. Coloque el tubo en un soporte magnético apropiado para tubos de 1,5 ml con la tapa abierta, para separar las perlas del sobrenadante. Una vez que la solución esté clara (aproximadamente 5 minutos), retire con cuidado y deseche el sobrenadante.
- 43. Agregue 0,8 ml de etanol al 80 % recién preparado al tubo mientras se encuentra en el soporte magnético. Incube a temperatura ambiente durante 30 segundos y luego retire con cuidado y deseche el sobrenadante. Repita este paso una vez, para un total de dos lavados.
- 44. Retire todo el etanol residual con una pipeta de 10 l. Compruebe visualmente que se haya eliminado todo el etanol.

Ferm Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503

- 45. Deje secar al aire las perlas durante 3-5 minutos mientras el tubo está en el soporte magnético con la tapa abierta. Asegúrese de que todo el etanol se haya evaporado. No seque demasiado los gránulos para evitar que los gránulos SPRI se agrupen.
- 46. Retire el tubo del soporte magnético y eluya el ADN de los gránulos agregando 66 μl de tampón de elución.
 Si utilizó 4 o menos muestras en el paso 36, eluya en menos tampón de elución (15 μl x número de muestras).
- 47. Mezcle bien agitando bien durante 30 segundos. Asegúrese de que los gránulos estén en solución.
- 48. Incube durante dos minutos a temperatura ambiente, preferiblemente en un agitador (1500 rpm).
- 49. Centrifugue (3-4 segundos a 500 rpm) para recoger el líquido en la parte inferior del tubo. Los gránulos deben permanecer en solución.
- 50. Coloque el tubo en el soporte magnético. Una vez que la solución esté clara (aproximadamente 5 minutos), transfiera el eluido a un nuevo tubo o placa. Asegúrese de no transferir gránulos, se pueden dejar algunos microlitros para evitar la transferencia de gránulos. El eluido representa el conjunto de bibliotecas final que se secuenciará.

Punto de parada seguro.

Las bibliotecas se pueden almacenar durante 4 meses entre 4 °C y 8 °C.

Opcional: Es muy recomendable verificar el tamaño de los fragmentos de ADN en su biblioteca utilizando un sistema de detección apropiado, como electroforesis en gel de agarosa o un bioanalizador. Se espera que los tamaños de los fragmentos de ADN oscilen entre 400 pb y 1000 pb. P. ej. Prepare un gel de agarosa al 1 % p/v de acuerdo con el protocolo de su laboratorio y analice 10 µl del conjunto de la biblioteca.

51. Continúe con el Protocolo 4 (opción 1 u opción 2) para cuantificar la concentración de la biblioteca de ADN combinada.

Farm. Eduardo Omar Miguez BłoSystems S.A. Director Tecnico M.N. 17503

Dra. MARIANA VILA PEREZ APODERADA BIOSystems S.A

PROTOCOLO 4. CUANTIFICACIÓN DE LA BIBLIOTECA POR KAPA (opción 1)

Notas importantes antes de comenzar

- La cuantificación de la biblioteca se puede realizar mediante KAPA (Protocolo 4, opción 1) o
 Qubit (Protocolo 4, opción 2). Ambas opciones han sido validadas por GenDx como un método
 adecuado para la cuantificación de bibliotecas. Tenga en cuenta que el ensayo Qubit no
 distingue la biblioteca de ADN funcional de otros ADNds de la muestra. El ensayo KAPA
 cuantifica solo la biblioteca de ADN funcional.
- Asegúrese de que todos los componentes del kit de cuantificación de la biblioteca de Illumina, incluidos los estándares, estén completamente descongelados y bien mezclados antes de su uso.
- El kit KAPA se suministra con 6 estándares. Es suficiente generar una curva estándar fiable midiendo solo los 4 estándares con la concentración más alta.
- Cuando utilice un instrumento de qPCR que requiera un colorante de referencia, agregue 0,4 μl de 50x ROX a cada reacción. Consulte la información de compatibilidad de instrumentos de KAPA Biosystems para obtener más detalles.

Protocolo

- 52. Para el primer uso de un kit nuevo: Prepare la mezcla de qPCR/Cebador agregando 1 ml de Illumina Primer Premix (10X) a una botella de 5 ml de KAPA SYBR® FAST qPCR Master Mix (2X) y mezcle bien.
- 53. Prepare una dilución 100x de la biblioteca de ADN combinada como se describe en la Tabla 12 y mezcle bien. Se recomienda realizar una medición por triplicado de la biblioteca combinada, preparando tres diluciones individuales 100x de sus bibliotecas, para minimizar la posibilidad de errores de dilución.

Tabla 12. Composición de la biblioteca de ADN diluida 100x

Componente	Volumen
Grupo de bibliotecas (Protocolo 3D)	10 µl
H ₂ O libre de nucleasas	990 µl
Volumen total	1000 μΙ

54. Prepare una dilución 1000x de la biblioteca de ADN combinada, como se describe en la Tabla 13, y mezcle bien.

Tabla 13. Composición de la biblioteca de ADN diluida 1000x

Componente		Volumen
Biblioteca de ADN diluido	100x	10 μΙ
H ₂ O libre de nucleasas		90 μΙ
	Volumen total	100 μl

55. Prepare una serie de diluciones 2000x, 4000x, 8000x, 16000x y 32000x de la biblioteca, como se describe en la Tabla 14.

Esto se hace añadiendo 10 μ l de la biblioteca combinada (diluida 1000x) a 10 μ l de H_2O libre de nucleasas para generar una dilución 2000x. Mezclar resuspendiendo bien. A continuación, agregue 10 μ l de la biblioteca combinada (diluida 2000x) a 10 μ l de H_2O para generar una dilución 4000x Mezcle la mezcla de reacción resuspendiendo completamente. Continúe con esta serie de diluciones

Farm. Eduardo Omar Miguez. BloSystems S.A. Director Tecnico M.N. 17503

DIG. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A 2x para generar las diluciones 8000x, 16000x y 32000x. Asegúrese de resuspender entre cada paso de dilución.

Tabla 14. Preparación de la serie de diluciones 2x de la biblioteca de ADN

	Factores de dilución final				
Componentes	2000x	4000x	8000x	16000x	32000x
Dilución de biblioteca a dilucir	1000x	2000x	4000x	8000x	16000x
Dilución del volumen de la biblioteca	10 μΙ	10 μΙ	10 μΙ	10 μΙ	10 μΙ
H ₂ O libre de nucleasas	10 μΙ	10 μΙ	10 μΙ	10 μΙ	10 μl
Volumen total	20 μΙ	20 μΙ	20 μΙ	20 μΙ	20 μl

56. Prepare los tubos o la placa de qPCR, utilizando las diluciones 2000x, 4000x, 8000x, 16000x y 32000x de las bibliotecas de ADN y los estándares de ADN n. ° 1-4, de acuerdo con la Tabla 15. Se recomienda hacer una mezcla maestra con un volumen suficiente para todas las muestras y estándares. Para ello, prepare una mezcla maestra que contenga qPCR Master Mix, colorante de referencia ROX (según el instrumento QPCR), H2O libre de nucleasas y una alícuota de 16 μl por reacción.

Tabla 15. Composición de la mezcla de reacción KAPA qPCR

Componentes	Volumen
KAPA SYBR FAST qPCR Master Mix que contiene Primer Premix	12 μΙ
H ₂ O libre de nucleasas	4 μΙ
ADN de biblioteca diluido o estándar de ADN (1-4)	4 μΙ
Volumen total	20 μl

- 57. Asegúrese de que los tubos o la placa de qPCR estén precintados. Recoja todos los componentes en el fondo de los huecos mediante una breve centrifugación.
- 58. Ejecute el protocolo de ciclado KAPA de acuerdo con la Tabla 16 en el instrumento qPCR del laboratorio y analice los datos. El instrumento qPCR debe adquirir en el canal SYBR Green.

Tabla 16. Protocolo de ciclo para el ensayo KAPA

	· · · · · · · · · · · · · · · · · · ·		
	Paso	Temperatura	Tiempo
	Desnaturalización inicial	95°C	5 min.
35 ciclos	Desnaturalización	95°C	30 s
Ciclo en 2 pasos	Recocido, alargamiento, adquisición de datos	60°C	45 s

59. Calcule la concentración de la biblioteca generando una curva estándar utilizando los Estándares de ADN descritos en la Tabla 17.

Multiplique la concentración de las bibliotecas diluidas por el factor de dilución para calcular la concentración de la biblioteca. Incluya únicamente diluciones de biblioteca en el cálculo que se encuentren dentro de la región de estándares de ADN.

Convierta la concentración de la biblioteca intermedia en la concentración de la biblioteca final, compensando el tamaño medio del fragmento de 600 pb. Esto se hace multiplicando la concentración de la biblioteca intermedia con el factor 0,75.

Ferm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503

NA VILA PEREZ

APODERADA BIOSystems S.A.

Tabla 17. Estándares de ADN en el kit KAPA

Estándares	concentración de dsDNA (pM)
1	20
2	2
3	0,2
4	0,02
5	0,002
6	0.0002

PROTOCOLO 4. CUANTIFICACIÓN DE LA BIBLIOTECA POR QUBIT (opción 2)

Notas importantes antes de comenzar

- La cuantificación de la biblioteca se puede realizar mediante KAPA (Protocolo 4, opción 1) o
 Qubit (Protocolo 4, opción 2). Ambas opciones han sido validadas por GenDx como un método
 adecuado para la cuantificación de bibliotecas. Tenga en cuenta que el ensayo Qubit no
 distingue la biblioteca de ADN funcional de otros ADNds de la muestra. El ensayo KAPA
 cuantifica solo la biblioteca de ADN funcional.
- Los estándares de ADN Qubit se almacenan a 4 °C, y el tinte y el tampón se almacenan a temperatura ambiente protegidos de la luz. Asegúrese de que todos los reactivos de Qubit estén a temperatura ambiente antes de comenzar la cuantificación de ADN.

Protocolo

- 52. Prepare todas las reacciones a temperatura ambiente y protegidas de la luz. Use guantes cuando manipule los tubos de ensayo. Utilice únicamente tubos de PCR transparentes de pared fina de 0,5 ml que sean adecuados para su uso en el fluorómetro Qubit.
- 53. Prepare dos tubos de ensayo Qubit para los dos estándares de ADN y un tubo de ensayo Qubit para cada muestra.
- 54. Prepare la solución de trabajo Qubit haciendo una dilución 1:200 del reactivo Qubit en tampón Qubit de acuerdo con la Tabla 18. Prepare 200 μl de solución de trabajo para cada estándar de ADN y / o muestra de ADN. Se recomienda hacer una mezcla maestra con un volumen suficiente para todas las muestras y estándares.

Tabla 18. Composición de la solución de trabajo Qubit

Componente	Volumen
Reactivo Qubit	1 μΙ
Tampón Qubit	199 µl
Volumen total	200 μl

55. Prepare los tubos de ensayo Qubit de acuerdo con la Tabla 19.

Tabla 19. Composición de los tubos de ensavo Oubit

Componente	Estándar de ADN	Muestra de ADN
Solución de trabajo Qubit	190 μΙ	195 µl
Estándar de ADN (del kit)	10 μΙ	-
Muestra de la biblioteca	-	5 μΙ
Volumen total	200 μl	200 μΙ

Ferm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico Dra. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

Instrucciones de USO del kit completo de biblioteca NGSgo versión 2, 2021-06 CE

- 56. Agite en el vórtice todos los tubos durante 2-3 segundos.
- 57. Incube los tubos durante 2 minutos a temperatura ambiente, protegidos de la luz.
- 58. Inserte los tubos en el fluorómetro Qubit y tome las lecturas. Determine la concentración de la biblioteca.
 - La concentración se puede calcular automáticamente utilizando la función Calculadora de dilución del fluorómetro Qubit. Para calcular manualmente la concentración, multiplique la concentración medida por el factor de dilución (40x) de la muestra de ADN diluida.
- 59. Multiplique el resultado de Qubit (ng/μl) por 1,9 para obtener una concentración en nM. (Los resultados de Qubit se presentan en ng/μl. Para convertir la concentración de la biblioteca NGSgo a nM (nanomolar), la concentración debe multiplicarse por el factor de corrección de 1,9. Por ejemplo, un resultado de Qubit de 15 ng/μl se traduce en una concentración de biblioteca de 28,5 nM).

Farm Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A

PROTOCOLO 5. SECUENCIACIÓN DE PRÓXIMA GENERACIÓN

El grupo de bibliotecas final creado en el protocolo 3D se puede secuenciar en una plataforma de secuenciación de Illumina.

Las plataformas de secuenciación de Illumina que utilizan una química similar a MiSeq (p. ej., ISeq 100, MiniSeq, HiSeq, NextSeq) son compatibles con el kit completo de biblioteca.

Las instrucciones de uso de secuenciación (IFU) están disponibles en www.GenDx.com, se proporciona una lista de IDU compatibles en la tabla 20.

Tabla 20. Ejemplo de IDU compatibles con el kit completo de biblioteca NGSgo para secuenciar en plataformas Illumina.

1	-	
Plataforma de	2	Número de material IDU
secuenciaciór	1	GenDx
Illumina MiSe	q	2012000
Illumina Minis	Seq	2012001
Illumina iSeq	100	2012002

Farm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico M.N. 17503 Drg. MARIANA VILA PEREZ APODERADA BIOSystems S.A.

12 APÉNDICE A. CONTROL DE CONTAMINACIÓN

Precauciones generales

- Tenga en cuenta que abrir los tubos después de la PCR puede liberar productos de amplificación por medio de aerosoles que pueden contaminar su área de trabajo. Por esta razón, las áreas de trabajo para los procedimientos de preamplificación y posamplificación deben estar separadas, como se describe en las normas EFI y ASHI.
- Idealmente, los procedimientos de preamplificación y posamplificación deben realizarse en salas separadas.
- Los protocolos 2, 3, 4 y 5 de este documento deben realizarse en el área de post-amplificación.
- Utilice un juego de pipetas por separado para los procedimientos de preamplificación. Se recomienda encarecidamente el uso de puntas de pipeta con filtros hidrófobos.
- En caso de contaminación, las mesas de laboratorio, los aparatos y las pipetas deben descontaminarse, por ejemplo, con un desinfectante Trigene al 1 % de acuerdo con las instrucciones del fabricante. Preferiblemente, las muestras y los reactivos contaminados se desechan.
- Evite la contaminación de índices.
- Respete los puntos de parada seguros del protocolo para garantizar un rendimiento óptimo de la biblioteca.
- Se recomienda encarecidamente el uso de H₂O nueva libre de nucleasas como se proporciona en el kit.

Farm Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A

13 GUÍA DE RESOLUCIÓN DE RPOBLEMAS

Contaminación o confusión de amplicones y/o bibliotecas

a) Sospecha de contaminación o confusión de amplicones y/o bibliotecas.

La contaminación y/o confusión se puede detectar inspeccionando el resultado de la tipificación de HLA, las proporciones de alelos y los niveles de ruido en los datos de NGS.

Las lecturas son inusualmente pequeñas o grandes

Las enzimas de fragmentación/preparación final no se mezclaron correctamente cuando se agregaron.

Repita la preparación de la biblioteca prestando atención a la adición y mezcla de amplicones, se agregaron a la mezcla maestra o no enzimas de fragmentación y tampones de preparación final.

b) Sobrefragmentación

Repetir la preparación de la biblioteca, teniendo cuidado de que la preparación de la fragmentación se realice en hielo. Tenga en cuenta los puntos de parada seguros en el procedimiento de preparación de la biblioteca.

c) Fragmentación insuficiente Vuelva a cuantificar el conjunto de amplicones y asegúrese de que la entrada de amplicones esté entre 50 ng y 1000 ng. Repita la preparación de la biblioteca.

d) Selección de tamaño incorrecta con gránulos SPRI

Asegúrese de que se apliquen las proporciones correctas de ADN por gránulo, como se describe en las instrucciones de uso. Asegúrese de que los gránulos SPRI estén a temperatura ambiente y se mezclen hasta obtener una solución homogénea cuando se utilicen.

Rendimiento de biblioteca bajo

Las enzimas de a) fragmentación/reparación final/ligasa/potenciador de ligadura/HiFi PCR o tampón no se agregaron a la mezcla o no se mezclaron correctamente cuando se agregaron.

La preparación de la biblioteca subóptima puede resultar en un rendimiento de la biblioteca más bajo. Repita la preparación de la biblioteca cuando el grupo de bibliotecas final sea <4 nM. Preste atención a la adición y mezcla de todos los componentes.

b) El adaptador, los índices o los fragmentos de ADN no se agregaron a la mezcla o no se mezclaron correctamente cuando se agregaron.

La preparación de la biblioteca subóptima puede resultar en un rendimiento de la biblioteca más bajo. Repita la preparación de la biblioteca cuando el grupo de bibliotecas final sea <4 nM. Preste atención a la adición y mezcla de todos los componentes.

c) Condiciones de ciclado no óptimas

Compruebe que las temperaturas y las condiciones de ciclado sean las correctas para: 1) fragmentación/reparación de extremos, 2) ligadura del adaptador, 3) indexación de PCR Cualquier resto de etanol debe eliminarse con

d) El etanol no se eliminó por completo después de secar al aire los gránulos **SPRI**

una pipeta de 10 µl. Seque los gránulos al aire durante 3-5 minutos antes de la elución.

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico

e) Los gránulos de SPRI se agrupan Asegúrese de que los gránulos se hayan secado durante la elución. al aire durante 3-5 minutos. No seque demasiado los gránulos. Diferentes volúmenes de gránulos de La solución de gránulos debe agitarse antes de su f) SPRI por muestra uso para asegurar una solución de gránulos homogénea. g) Gránulos recogidos accidentalmente La solución de ADN/gránulos se puede pipetear durante las etapas de lavado y/o de nuevo en el tubo. Coloque el tubo en el imán elución. durante ~5 minutos hasta que la solución sea transparente. Repita el procedimiento de lavado o elución. h) Rendimiento de biblioteca bajo Asegúrese de que los gránulos estén a temperatura ambiente y de que se mezclen después de la limpieza hasta obtener una solución homogénea cuando se utilicen y de que el procedimiento de limpieza

Resultados inusuales de la cuantificación de la biblioteca a) Concentración de biblioteca más Se espera que la concentración de la biblioteca baja/más alta de lo habitual oscile entre ~10-100 nM cuando se utiliza una entrada de amplicón (grupo) NGSgo-AmpX de ~250 ng. Cuando la concentración de la biblioteca se desvía, se recomienda ejecutar una fracción del conjunto de la biblioteca en un gel de agarosa al 1 % para evaluar el tamaño, el rendimiento y la calidad del fragmento. Se espera un frotis de fragmentos de ADN que oscilen entre 400 y 1000 pb.

se realice a temperatura ambiente.

- b) Los resultados de la cuantificación de Realice mediciones duplicadas o triplicadas en la biblioteca no son reproducibles una serie de diluciones de biblioteca. Cuando las mediciones repetidas se desvíen, repita la cuantificación.
- c) Los resultados de la cuantificación de Es posible que la biblioteca no sea funcional la biblioteca KAPA son negativos, debido a la ausencia de cebadores de índice y/o mientras que el gel muestra secuencias adaptadoras. Repita el ensayo KAPA bibliotecas de buena calidad para verificar la funcionalidad y concentración de la biblioteca. Si es negativo, repita la preparación

de la biblioteca.

Almacenamiento de bibliotecas y productos de PCR

Los productos de PCR se pueden almacenar a) Almacenamiento de productos de PCR NGSgo-AmpX hasta 3 meses entre 4 °C y 8 °C. Si la temperatura de almacenamiento y/o la duración exceden este rango, la integridad de los productos de PCR se puede verificar en un gel de agarosa antes de proceder a la preparación de la biblioteca. Los productos de PCR no requieren una limpieza (por

Farm. Eduardo Omar Miguez BloSystems S.A. Director Técnico M.N. 17503

DIO. MARIANA VILA PEREZ APODERADA BloSystems S.A.

ejemplo, Exo / SAP) para su almacenamiento.

b)	Almacenamiento de bibliotecas NGSgo intermedias	Las bibliotecas <u>no</u> se pueden almacenar después del paso de fragmentación o ligadura del adaptador (Protocolo 3A). Las bibliotecas se pueden almacenar de forma segura durante la noche después de los pasos de limpieza de los gránulos SPRI (de 4 °C a 8 °C) o después de la PCR de indexación (de 4 °C a 15 °C).
c)	Almacenamiento de bibliotecas NGSgo finales	Las bibliotecas finales (sin desnaturalizar) se pueden almacenar hasta 4 meses entre 4 °C y 8 °C antes de la secuenciación. Se recomienda realizar un método de cuantificación de bibliotecas (KAPA) basado en qPCR de KAPA antes de la secuenciación, para garantizar la funcionalidad de la biblioteca y una medición precisa de la concentración de la biblioteca después del almacenamiento. Utilice bibliotecas recién desnaturalizadas para la secuenciación.

Farm. Eduardo Omar Miguez Błosystems S.A. Director Tecnico M.N. 17503

14 CONTRATO DE LICENCIA LIMITADA

El uso de este producto significa que el comprador o usuario del kit completo de biblioteca de NGSgo de GenDx está de acuerdo con las siguientes condiciones:

- El kit NGSgo y sus componentes se pueden utilizar únicamente de acuerdo con las IDU del kit completo de la biblioteca NGSgo, y solo con los componentes descritos en las IDU. GenDx no otorga ninguna licencia bajo su propiedad intelectual para usar o incorporar los componentes adjuntos de NGSgo con cualquier componente no incluido en este kit, excepto como se describe en las IDU de GenDx NGSgo y los protocolos adicionales disponibles en www.gendx.com.
- Aparte de lo declarado expresamente en las licencias, GenDx no garantiza que el kit de NGSgo y/o su(s) uso(s) no vulnere los derechos de terceros.
- Los kits de NGSgo y sus componentes tienen licencia para un solo uso y no pueden reutilizarse, renovarse ni revenderse.
- GenDx rechaza específicamente cualquier otra licencia, explícita o implícita, aparte de las indicadas expresamente.
- El comprador o usuario del kit se comprometen a no llevar a cabo acciones que pudieran
 conllevar o facilitar actos prohibidos arriba ni permitírselo a otros. GenDx podrá hacer valer ante
 cualquier tribunal las prohibiciones de este contrato de licencia limitada y recuperará todos sus
 gastos en investigación y justicia, incluidos los honorarios de los abogados, de cualquier
 procedimiento para hacer valer este contrato de licencia limitada o cualquiera de sus derechos
 de propiedad intelectual asociados al kit y/o sus componentes.
- Para ver los términos actualizados de la licencia, visite www.GenDx.com.

Marcas registradas: GenDx es una Marca comercial registrada de Genome Diagnostics B.V.

NGSgo es una marca comercial registrada de GenDx.

Otros: Todas las demás marcas comerciales son propiedad de sus respectivos dueños. Para

más información www.GenDx.com.

Farm. Eduardo Omar Miguez. BioSystems S.A. Director Teonico M.N. 17503

INFORMACIÓN DE PEDIDO

Los productos de GenDx cuentan con la asistencia directa de GenDx o la de su distribuidor o vendedor local. Póngase en contacto con su distribuidor local de GenDx o con el equipo de atención al cliente de GenDx en el número +31 302 523 799 o en **order@gendx.com** para obtener cualquier información sobre los productos o solicitar un presupuesto.

Genome Diagnostics B.V.
Nombre comercial de GenDx
Alexander Numan Building
Yalelaan 48
3584 CM Utrecht
Países Bajos

Teléfono:+31 (0)30 252 3799
Fax: +31 (0)30 254 2611
Email: support@gendx.com
www: www.GenDx.com

Farm Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503

Dra. MARIANA VILA PEREZ APODERADA BIOSystems S.A

© 2021 GenDx. Todos los derechos reservados.

ROTULOS "NGSgo® Library Full Kit" (para 96 reacciones)

Disponible con cuatro números de catálogo diferentes, cada uno con una placa NGSgo-IndX diferente.

- IndX placa I (Ref.: 2842156).
- IndX placa II (Ref.: 2842256).
- IndX placa III (Ref.: 2842356).
- IndX placa IV (Ref.: 2842456).

NGSgo® Library Full Kit se compone de dos cajas:

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX).

Parte 2 de 2 (GenDx-AMPure XP).

NGSgo® Library Full Kit

A) Ref.: 2842156

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

Rotulo Externo:

NGSgo® Library Full Kit

1/2: NGSgo-IndX Plate I & NGSgo-LibrX

1 www.gendx.com/ifu

√96

LOT 22000000 Store at -20°C

NGSgo® Library Full Kit 1/2: NGSgo-IndX Plate I & NGSgo-LibrX

COMP MAT End Prep Enzyme End Prep Buffer 2002005 2 Ligase Mix 2002005.3 2002005.4 Ligation Enhancer 2002005.5 HIFI PCR MIX Fragmentase Enzyme 2002005.6 2002005.8 Fragmentase Buffer Adapter AD IL NGSgo F IndX Plate I

₹/96

Importado por:

BioSystems S.A

Av. Dorrego 673 (C1414CKB)

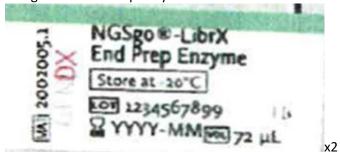
TEL:(54-11)4854-7775

Directora Técnica: Eduardo Omar Miguez MN: 17503

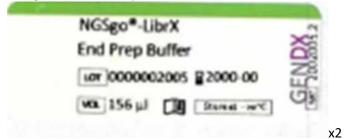
Producto para diagnóstico de uso In Vitro

Uso Profesional Exclusivo

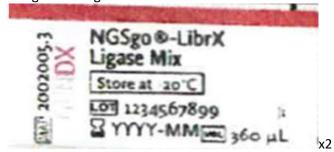
Autorizado por ANMAT

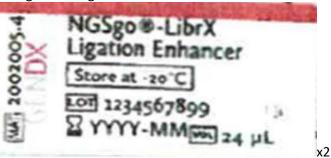

PM: 626-205

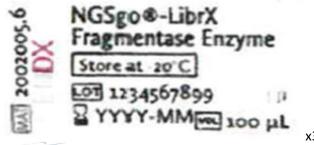
Farm. Eduardo Omar Miguez Błosystems S.A. Director Tecnico M.N. 17503 MAT 2812006 www.gendx.com/ifu REF 2842156, v1



Rótulos Internos:


- NGSgo-LibrX End Prep Enzyme:


- NGSgo-LibrX End Prep Buffer:


- NGSgo-LibrX Ligase Mlx:

- NGSgo-LibrX Ligase Enhancer:

- NGSgo-LibrX HiFi PCR Mix:

Dra. MARIAWA VILA PEREZ APODERADA BIOSYSTOMS S.A.

Farm. Eduardo Omar Miguez. BłoSystems S.A. Director Tecnico M.N. 17503 NGSgo-LibrX Fragmentase Enzyme: NGSgo@-LibrX Fragmentase Enzyme x2 NGSgo-LibrX Fragmentase Buffer: NGSgo ®-LibrX х3 Nuclease Free water (H2O): Nuclease Free H2O LOT 1900000000 ₽2019-01 vol 1.25 ml 1 х3 NGSgo-IndX Adapter AD-IL: NGSgo*-IndX Adapter AD-IL LOT 0000002103 2000-00 Storeat-20°C

- NGSgo®-IndX plate 1:

NGS9o ® −IndX Plate I 2022−12 LOT 2002312153 store at - 20°C 🕕 GenDx

х2

Eduardo Omer Miguez BłoSystems S.A. Director Tecnico M.N. 17503

Rótulos Externos

NGSgo® Library Full Kit 2/2: GenDx AMPure XP \$\forall 96

COMP

AMPure XP Beads

5003653.2 5003653.1

AMPure XP Beads Elution Buffer

NGSgo® Library Full Kit

2/2: GenDx-AMPure XP

GENDX

www.gendx.com/ifu

2842156

22000000

MAT 2812006 www.gendx.com/ifu REF 2842156, v1

Importado por:

BioSystems S.A

Av. Dorrego 673 (C1414CKB)

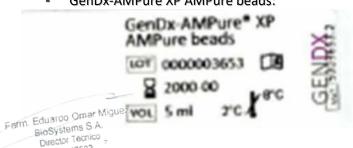
TEL:(54-11)4854-7775

Directora Técnica: Eduardo Omar Miguez MN: 17503

Producto para diagnóstico de uso In Vitro

Uso Profesional Exclusivo Autorizado por ANMAT

PM: 626-205


M.N. 17503

Rótulos Internos

- GenDx-AMPure XP Elution Buffer:

- GenDx-AMPure XP AMPure beads:

B) Ref.: 2842256

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

Rotulo Externo:

NGSgo® Library Full Kit

1/2: NGSgo-IndX Plate II & NGSgo-LibrX

www.gendx.com/ifu

2842256

LOT

22000000

Store at -20°C

NGSgo* Library Full Kit 1/2: NGSgo-IndX Plate II & NGSgo-LibrX

COMP	MAT
End Prep Enzyme	2002005.1
End Prep Buffer	2002005 2
Ligase Mix	2002005.3
Ligation Enhancer	2002005.4
HIFI PCR MIX	2002005.5
Fragmentase Enzyme	2002005.6
Fragmentase Buffer	2002005 8
Adapter AD IL	2002103.1
NGSgo * IndX Plate II	2002253

i MAT 2812006 www.gendx.com/ifu REF 2842156, v1

Importado por:

BioSystems S.A

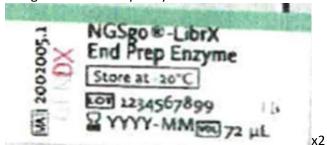
Av. Dorrego 673 (C1414CKB)

TEL:(54-11)4854-7775

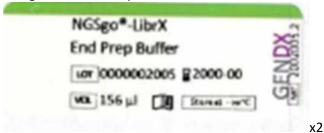
Directora Técnica: Eduardo Omar Miguez MN: 17503

Producto para diagnóstico de uso In Vitro

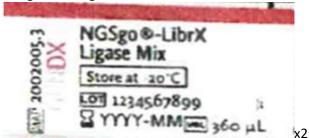
Uso Profesional Exclusivo Autorizado por ANMAT

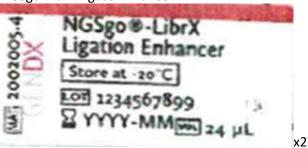

PM: 626-205

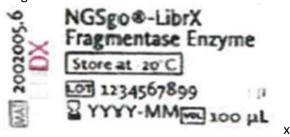
DIO. MARIANA VILA PEREZ APODERADA BloSystems S.A.

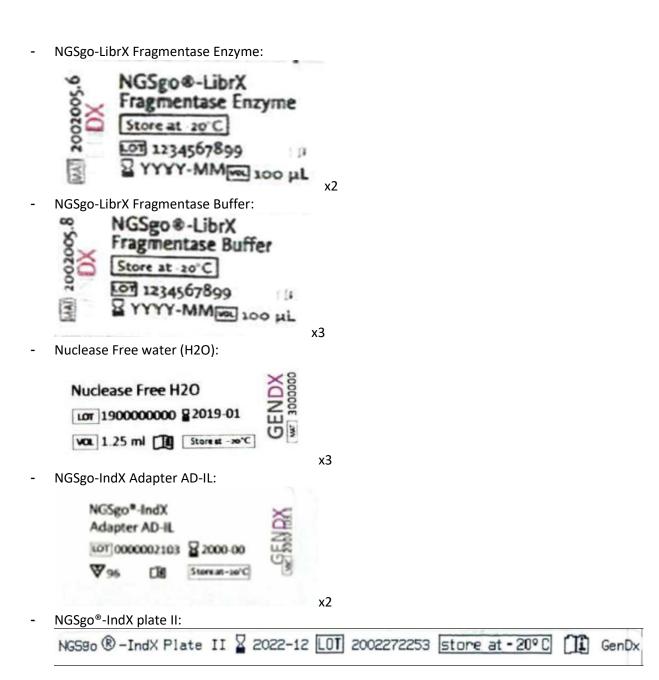

Farm. Eduardo Omar Miguez BłoSystems S.A. Director Tecnico M.N. 17503

Rótulos Internos:


- NGSgo-LibrX End Prep Enzyme:


- NGSgo-LibrX End Prep Buffer:


NGSgo-LibrX Ligase Mlx:


- NGSgo-LibrX Ligase Enhancer:

- NGSgo-LibrX HiFi PCR Mix:

Farm. Eduardo Omar Miguez. BłoSystems S.A. Director Tecnico M.N. 17503

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503

Parte 2 de 2 (GenDx-AMPure XP).

Rotulo Externo:

NGSgo® Library Full Kit 2/2: GenDx AMPure XP \sqrt{96}

COMP AMPure XP Beads Elution Buffer

MAT 5003653.2 5003653.1

i MAT 2812006 www.gendx.com/ifu REF 2842256, v1

Importado por:

BioSystems S.A

Av. Dorrego 673 (C1414CKB)

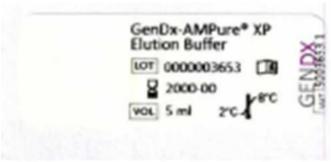
TEL:(54-11)4854-7775

Directora Técnica: Eduardo Omar Miguez MN: 17503

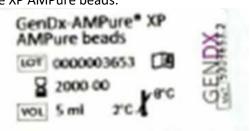
Producto para diagnóstico de uso In Vitro

Uso Profesional Exclusivo Autorizado por ANMAT

PM: 626-205


Farm. Eduardo Omar Miguez

Director Tecnico M.N. 17503


BioSystems S.A.

Rótulos Internos:

GenDx-AMPure XP Elution Buffer:

GenDx-AMPure XP AMPure beads:

C) Ref.: 2842356

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

Rotulo Externo

NGSgo® Library Full Kit

1/2: NGSgo-IndX Plate III & NGSgo-LibrX

IVD (€0123

www.gendx.com/ifu

2842356

22000000

2022-01

Store at -20°C

NGSgo* Library Full Kit

1/2: NGSgo-IndX Plate III & NGSgo-LibrX

COMP MAT End Prep Enzyme 2002005.1 End Prep Buffer 2002005 2 2002005.3 Ligase Mix Ligation Enhancer 20020054 HIFI PCR MIX 2002005.5 Fragmentase Enzyme

2002005.6 Fragmentase Buffer 2002005.8 Adapter AD IL 2002103.1 NGSgo F IndX Plate III 2002353

i MAT 2812006 www.gendx.com/ifu REF 2842156, v1

Importado por:

BioSystems S.A

Av. Dorrego 673 (C1414CKB)

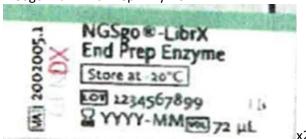
TEL:(54-11)4854-7775

Directora Técnica: Eduardo Omar Miguez MN: 17503

Producto para diagnóstico de uso In Vitro

Uso Profesional Exclusivo Autorizado por ANMAT

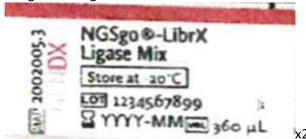
PM: 626-205


Farm. Eduardo Omar Miguez BloSystems S.A. Director Técnico M.N. 17503

DIO. MARIANA VILA PEREZ APODERADA BloSystems S.A.

Σ/96

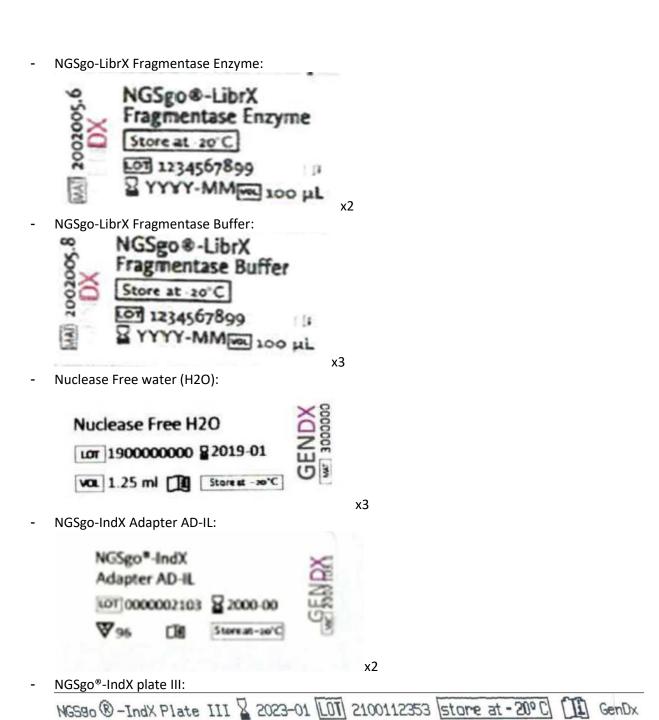
Rótulos Internos:


NGSgo-LibrX End Prep Enzyme:

- NGSgo-LibrX End Prep Buffer:

NGSgo-LibrX Ligase MIx:

- NGSgo-LibrX Ligase Enhancer:



- NGSgo-LibrX HiFi PCR Mix:

DIO. MARIANA VILA PEREZ APODERADA BIOSystems S.A

Ferm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico M.N. 17503

Farm. Eduardo Omar Miguez.
BioSystems S.A.
Director Tecnico
M.N. 17503

Parte 2 de 2 (GenDx-AMPure XP).

Rotulo Externo:

NGSgo® Library Full Kit 2/2: GenDx AMPure XP \$\sqrt{96}\$

COMP AMPure XP Beads Elution Buffer

MAT 5003653.2 5003653.1

i MAT 2812006 www.gendx.com/ifu REF 2842356, v1

Importado por:

BioSystems S.A

Av. Dorrego 673 (C1414CKB)

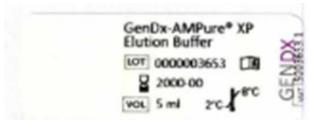
TEL:(54-11)4854-7775

Directora Técnica: Eduardo Omar Miguez MN: 17503

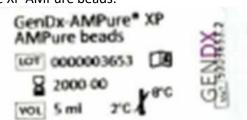
Producto para diagnóstico de uso In Vitro

Uso Profesional Exclusivo Autorizado por ANMAT

PM: 626-205


Farm. Eduardo Omar Miguez BioSystems S.A.

Director Tecnico


M.N. 17503

Rótulos Internos:

GenDx-AMPure XP Elution Buffer:

GenDx-AMPure XP AMPure beads:

D) Ref.: 2842456

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

Rotulo Externo:

NGSgo® Library Full Kit

1/2: NGSgo-IndX Plate IV & NGSgo-LibrX

COMP MAT End Prep Enzyme 2002005.1 End Prep Buffer 2002005.2 Ligase Mix 2002005.3 Ligation Enhancer 2002005.4 HIFI PCR MIX 2002005.5 Fragmentase Enzyme 2002005.6 Fragmentase Buffer 2002005.8 Adapter AD IL NGSgo # IndX Plate IV 2002453

MAT 2812006 www.gendx.com/ifu REF 2842156, v1

\E/96

Importado por:

BioSystems S.A

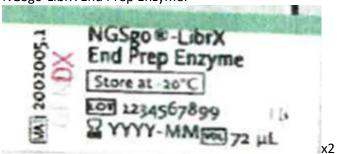
Av. Dorrego 673 (C1414CKB)

TEL:(54-11)4854-7775

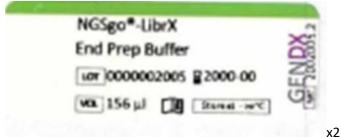
Directora Técnica: Eduardo Omar Miguez MN: 17503

Producto para diagnóstico de uso In Vitro

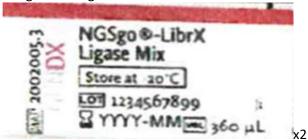
Uso Profesional Exclusivo Autorizado por ANMAT

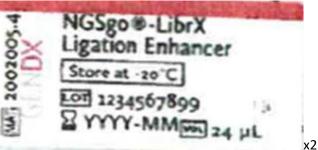

PM: 626-205

Farm. Eduardo Omar Miguez BłoSystems S.A. Director Tecnico M.N. 17503


Drg. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A

Rótulos Internos:


- NGSgo-LibrX End Prep Enzyme:


NGSgo-LibrX End Prep Buffer:

- NGSgo-LibrX Ligase Mlx:

- NGSgo-LibrX Ligase Enhancer:

- NGSgo-LibrX HiFi PCR Mix:

Dra. MARIANA VILA PEREZ APODERADA BIOSYSTEMS S.A.

хЗ

Ferm. Eduardo Omar Miguez. BioSystems S.A. Director Tecnico M.N. 17503 NGSgo-LibrX Fragmentase Enzyme: mentase Enzyme NGSgo-LibrX Fragmentase Buffer: NGSgo & - LibrX х3 Nuclease Free water (H2O): Nuclease Free H2O LOT 1900000000 \$2019-01 va. 1.25 ml Store at -20°C х3 NGSgo-IndX Adapter AD-IL: NGSgo*-IndX Adapter AD-IL LOT 0000002103 2000-00 ∇ 26 x2 NGSgo®-IndX plate IV: NGS90 ® -IndX Plate IV \$ 2022-01 LOT 2000182453 store at - 20° €

Ferm. Eduardo Omar Miguez Błosystems S.A. Director Tecnico M.N. 17503

Parte 2: GenDx-AMPure XP

Rotulo Externo:

COMP

AMPure XP Beads

MAT 5003653.2

Elution Buffer

5003653.1

i MAT 2812006 www.gendx.com/ifu REF 2842456, v1

Importado por:

BioSystems S.A

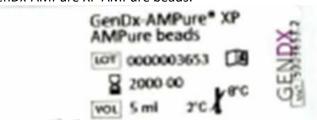
Av. Dorrego 673 (C1414CKB)

TEL:(54-11)4854-7775

Directora Técnica: Eduardo Omar Miguez MN: 17503

Producto para diagnóstico de uso In Vitro

Uso Profesional Exclusivo Autorizado por ANMAT


PM: 626-205

Rótulos Internos:

GenDx-AMPure XP Elution Buffer:

- GenDx-AMPure XP AMPure beads:

Farm. Eduardo Omar Miguez BioSystems S.A. Director Tecnico M.N. 17503 Dra. MARIANA VILA PEREZ APODERADA BIOSYSTOMS S.A.

República Argentina - Poder Ejecutivo Nacional 1983/2023 - 40 AÑOS DE DEMOCRACIA

Hoja Adicional de Firmas Anexo

Anexo
Número:
Referencia: BIOSYSTEMS S.A. rótulos e instrucciones de uso
El documento fue importado por el sistema GEDO con un total de 52 pagina/s.

Digitally signed by GESTION DOCUMENTAL ELECTRONICA - GDE Date: 2023.12.19 08:00:51 -03:00

República Argentina - Poder Ejecutivo Nacional AÑO DE LA DEFENSA DE LA VIDA, LA LIBERTAD Y LA PROPIEDAD

Certificado - Redacción libre

Número:

Referencia: 1-0047-3110-004968-23-0

CERTIFICADO DE AUTORIZACIÓN E INSCRIPCIÓN PRODUCTO MÉDICO PARA DIAGNÓSTICO IN VITRO

Expediente Nº 1-0047-3110-004968-23-0

La Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT) certifica que de acuerdo con lo solicitado por BioSystems S.A.; se autoriza la inscripción en el Registro Nacional de Productores y Productos de Tecnología Médica (RPPTM), de un nuevo producto con los siguientes datos identificatorios característicos:

DATOS IDENTIFICATORIOS CARACTERÍSTICOS

Nombre Descriptivo: NGSgo® Library Full Kit

Marca comercial: Genome Diagnostics B.V (GenDX)

Modelos:

- NGSgo® Library Full Kit (Ref.: 2842156).
- NGSgo® Library Full Kit (Ref.: 2842256).
- NGSgo® Library Full Kit (Ref.: 2842356).
- NGSgo® Library Full Kit (Ref.: 2842456).

Indicación/es de uso:

NGSgo Library Full Kit es un dispositivo de diagnóstico in vitro cualitativo destinado a la preparación de bibliotecas para aplicaciones de secuenciación de próxima generación (NGS) descendentes. Las muestras son amplicones derivados de dispositivos NGSgo, originados a partir de ADN genómico humano.

El kit está destinado a generar bibliotecas de ADN, que son adecuadas para la genotipificación de HLA a un nivel de alta resolución. Es un ensayo no automatizado de un solo uso para ayudar en el diagnóstico de la

compatibilidad del gen HLA entre el donante y el receptor con fines de trasplante. La población de prueba prevista son tanto donantes de trasplantes como receptores de trasplantes.

El kit completo de la biblioteca NGSgo está destinado para uso profesional de laboratorio, por personal capacitado en amplificación por PCR. Está destinado a ser utilizado en procedimientos de trasplante donde el tiempo no es un factor crítico.

Forma de presentación: NGSgo® Library Full Kit (para 96 reacciones) se compone de dos cajas:

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX).

Parte 2 de 2 (GenDx-AMPure XP).

NGSgo® Library Full Kit

A) Ref.: 2842156

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).
- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate 1: Placa NGSgo-IndX 1; 1 placa x 96 reacciones (Ref.: 2002153). Parte 2 de 2 (GenDx-AMPure XP).
- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

B) Ref.: 2842256

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).
- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).

- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate II: Placa NGSgo-IndX II; 1 placa x 96 reacciones (Ref.: 2002253). Parte 2 de 2 (GenDx-AMPure XP).
- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

C) Ref.: 2842356

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.4).
- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate III: Placa NGSgo-IndX III; 1 placa x 96 reacciones (Ref.: 2002353).

Parte 2 de 2 (GenDx-AMPure XP).

- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

D) Ref.: 2842456

Parte 1 de 2 (NGSgo-IndX y NGSgo-LibrX):

- NGSgo-LibrX End Prep Enzyme: Enzima de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.1).
- NGSgo-LibrX End Prep Buffer: Tampón de preparación final NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.2).
- NGSgo-LibrX Ligase MIx: Mezcla de ligasa NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.3).
- NGSgo-LibrX Ligase Enhancer: Potenciador de ligadura NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.:

2002005.4).

- NGSgo-LibrX HiFi PCR Mix: Mezcla de PCR HiFi NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.5).
- NGSgo-LibrX Fragmentase Enzyme: Enzima de fragmentación NGSgo-LibrX; 2 tubos x 96 reacciones (Ref.: 2002005.6).
- NGSgo-LibrX Fragmentase Buffer: Tampón de fragmentación NGSgo-LibrX; 3 tubos x 96 reacciones (Ref.: 2002005.8).
- Nuclease Free water (H2O): H2O libre de nucleasas; 3 tubos x 1,25 mL (Ref.: 3000000).
- NGSgo-IndX Adapter AD-IL: Adaptador para Illumina (AD-IL) NGSgo-IndX; 2 tubos x 96 reacciones (Ref.: 2002103.1).
- NGSgo®-IndX plate IV: Placa NGSgo-IndX IV; 1 placa x 96 reacciones (Ref.: 2002453).

Parte 2: GenDx-AMPure XP

- GenDx-AMPure XP Elution Buffer: Tampón de elución GenDx-AMPure XP; 1 frasco x 5 mL (Ref.: 5003653.1).
- GenDx-AMPure XP AMPure beads: Gránulos GenDx-AMPure XP AMPure; 1 frasco x 5 mL (Ref.: 5003653.2).

Período de vida útil: NGSgo® Library Full Kit, parte 1 de 2: NGSgo-IndX y NGSgo-LibrX debe almacenarse a - 20 °C.

- NGSgo-LibrX es estables durante 18 meses después de la fecha de fabricación, a excepción del tampón de preparación final, que es estable durante 2 años después de la fecha de fabricación.
- NGSgo-IndX es estables durante 2 años después de la fecha de fabricación.

NGSgo® Library Full Kit, parte 2 de 2: GenDx-AMPure XP debe almacenarse a 4 °C. Los componentes GenDx-AMPure XP son estables durante 2 años después de la fecha de fabricación.

Nombre del fabricante:

Genome Diagnostics B.V.

Lugar de elaboración:

Yalelaan 48, 3584 CM Utrecht, Paises Bajos

Grupo de Riesgo: Grupo C

Condición de uso: Uso profesional exclusivo

Se extiende el presente Certificado de Autorización e Inscripción del PRODUCTO PARA DIAGNÓSTICO IN VITRO PM 626-205, con una vigencia de cinco (5) años a partir de la fecha de la Disposición autorizante.

Expediente Nro:

1-0047-3110-004968-23-0

Nº Identificatorio Trámite: 51845

Digitally signed by PEARSON Enriqueta María Date: 2024.01.26 12:50:48 ART Location: Ciudad Autónoma de Buenos Aires